An a priori error estimate for a monotone mixed finite-element discretization of a convection-diffusion problem

نویسنده

  • Stefan Holst
چکیده

We present a local exponential fitting hybridized mixed finiteelement method for convection-diffusion problem on a bounded domain with mixed Dirichlet Neuman boundary conditions. With a new technique that interpretes the algebraic system after static condensation as a bilinear form acting on certain lifting operators we prove an a priori error estimate on the Lagrange multipliers that requires minimal regularity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems

Some least-squares mixed finite element methods for convectiondiffusion problems, steady or nonstationary, are formulated, and convergence of these schemes is analyzed. The main results are that a new optimal a priori L2 error estimate of a least-squares mixed finite element method for a steady convection-diffusion problem is developed and that four fully-discrete leastsquares mixed finite elem...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Error estimates for higher-order finite volume schemes for convection-diffusion problems

It is still an open problem to prove a priori error estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domain Ω in IR2 and we can prove such kind ...

متن کامل

A Priori Error Estimate of a Multiscale Finite Element Method for Transport Modeling

This work proposes an a priori error estimate of a multiscale finite element method to solve convection-diffusion problems where both velocity and diffusion coefficient exhibit strong variations at a scale which is much smaller than the domain of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly. Our method, introduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2008